Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729548

RESUMO

Zwitterionic polymers possess equal total positive and negative charges in the repeating units, making them electrically neutral overall. This unique property results in superhydrophilicity, which makes the zwitterionic polymers highly effective in resisting protein adsorption, thus endowing the drug carriers with long blood circulation time, inhibiting thrombus formation on biomedical devices in contact with blood, and ensuring the good sensitivity of sensors in biomedical application. Moreover, zwitterionic polymers have tumor-targeting ability and pH-responsiveness, rendering them ideal candidates for antitumor drug delivery. Additionally, the high ionic conductivity of zwitterionic polymers makes them an important raw material for ionic skin. Zwitterionic polymers exhibit remarkable resistance to bacterial adsorption and growth, proving their suitability in a wide range of biomedical applications such as ophthalmic applications, and wound dressings. In this paper, we provide an in-depth analysis of the different structures and characteristics of zwitterionic polymers and highlight their unique qualities and suitability for biomedical applications. Furthermore, we discuss the limitations and challenges that must be overcome to realize the full potential of zwitterionic polymers and present an optimistic perspective for zwitterionic polymers in the biomedical fields. STATEMENT OF SIGNIFICANCE: Zwitterionic polymers have a series of excellent properties such as super hydrophilicity, anti-protein adsorption, antibacterial ability and good ionic conductivity. However, biomedical applications of multifunctional zwitterionic polymers are still a major field to be explored. This review focuses on the design and application of zwitterionic polymers-based nanosystems for targeted and responsive delivery of antitumor drugs and cancer diagnostic agents. Moreover, the use of zwitterionic polymers in various biomedical applications such as biomedical devices in contact with blood, biosensors, ionic skin, ophthalmic applications and wound dressings is comprehensively described. We discuss current results and future challenges for a better understanding of multifunctional zwitterionic polymers for biomedical applications.

2.
J Control Release ; 351: 752-778, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216173

RESUMO

Prussian blue (PB) nanoparticles possess excellent physicochemical properties, including imaging features, robust photothermal conversion ability, catalytic activity, surface modifiability, effective drug loading, good stability, biocompatibility and biodegradability. With the advancement of nanotechnology, diverse PB-based nanoplatforms have been developed for biomedical applications. This review systematically summarized recent studies on PB-based nanoplatforms in the treatment of tumor (photothermal therapy, photodynamic therapy, chemotherapy, immunotherapy, theranostics, etc.), cardiovascular and cerebrovascular diseases (restenosis, atherosclerosis, thrombosis, ischemic stroke, etc.), bacterial infections (photothermal sterilization, biofilms disruption, etc.), and other inflammation-related diseases (liver injury, acute pancreatitis, inflammatory bowel disease, osteoarthritis, etc.). Finally, the existing challenges associated with current studies are discussed, and the future possible research and application directions for PB-based nanoplatforms are proposed, providing paradigms for subsequent development.


Assuntos
Nanopartículas , Pancreatite , Humanos , Doença Aguda , Ferrocianetos/uso terapêutico , Ferrocianetos/química , Nanopartículas/química
3.
ACS Omega ; 6(41): 27170-27182, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693137

RESUMO

In order to cope with the global climate crisis, carbon capture, utilization, and storage are the key technologies to achieve carbon neutrality, and it is an elegant geological utilization method for the oil and gas industry to improve the recovery rate of crude oil by using CO2. However, in practical applications, the problem of low miscibility of CO2 and crude oil, resulting in low oil displacement efficiency, cannot be avoided. Thus, finding an appropriate method to increase the utilization rate of CO2 is a worth in-depth study. In light of this, this paper carries out the study on improving the CO2 flooding efficiency by using oil and gas amphiphilic surfactants. First of all, according to the molecular structure theory and the solubility experiment of surfactants in CO2, five kinds of surfactants and two kinds of additives with good performance of oil and gas were selected. Then, three experiments were conducted to explore the mechanism of the selected surfactants. The main mechanism of promoting the miscibility of CO2-crude oil is to reduce the interfacial tension of the oil and gas phases, followed by increasing the volume expansion of crude oil and reducing the viscosity of crude oil. Finally, through the slim tube displacement experiment, the oil displacement efficiency effect of adding the compound systems of SPO5/n-pentanol was simulated. The results show that the oil displacement efficiency is significantly higher than that of pure CO2 flooding, and the pressure of miscibility reduces at the same time. The selected reagents have a good effect of promoting miscibility. Therefore, this is an effective method to improve the geological utilization of CO2.

4.
J Nanosci Nanotechnol ; 14(6): 4405-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738404

RESUMO

P(U-MMA-ANI) interpenetrating polymer network (IPN) damping and absorbing material is successfully synthesized by PANI particles served as an absorbing agent with the microemulsion polymerization and P(U-MMA) foam IPN network structure for substrate materials with foaming way. P(U-MMA-ANI) IPN is characterized by the compression mechanical performance testing, TG-DSC, and DSC. The results verify that the P(U-MMA) IPN foam damping material has a good compressive strength and compaction cycle property, and the optimum content of PMMA was 40% (mass) with which the SEM graphs do not present the phase separation on the macro level between PMMA and PU, while the phase separation was observed on the micro level. The DTG curve indicates that because of the formation of P(U-MMA) IPN, the decomposition temperature of PMMA and the carbamate in PU increases, while that of the polyol segment in PU has almost no change. P(U-MMA-ANI) IPN foam damping and absorbing material is obtained by PANI particles served as absorbing agent in the form of filler, and PMMA in the form of micro area in substrate material. When the content of PANI was up to 2.0% (mass), the dissipation factor of composites increased, and with the increasing of frequency the dissipation factor increased in a straight line.


Assuntos
Compostos de Anilina/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Polimetil Metacrilato/química , Poliuretanos/química , Absorção , Cristalização/métodos , Emulsões/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...